Modeling Micro-patterns for Feature Extraction
نویسندگان
چکیده
Currently, most of the feature extraction methods based on micropatterns are application oriented. The micro-patterns are intuitively userdesigned based on experience. Few works have built models of micro-patterns for feature extraction. In this paper, we propose a model-based feature extraction approach, which uses micro-structure modeling to design adaptive micro-patterns. We first model the micro-structure of the image by Markov random field. Then we give the generalized definition of micro-pattern based on the model. After that, we define the fitness function and compute the fitness index to encode the image’s local fitness to micro-patterns. Theoretical analysis and experimental results show that the new algorithm is both flexible and effective in extracting good features.
منابع مشابه
Neural Networks for the Classification of Benign and Malignant Patterns in Digital Mammograms
This chapter presents neural network-based techniques for the classification of micro-calcification patterns in digital mammograms. Artificial neural network (ANN) applications in digital mammography are mainly focused on feature extraction, feature selection, and classification of micro-calcification patterns into ‘benign’ and ‘malignant’. An extensive review of neural network based techniques...
متن کاملCommon Spatial Patterns Feature Extraction and Support Vector Machine Classification for Motor Imagery with the SecondBrain
Recently, a large set of electroencephalography (EEG) data is being generated by several high-quality labs worldwide and is free to be used by all researchers in the world. On the other hand, many neuroscience researchers need these data to study different neural disorders for better diagnosis and evaluating the treatment. However, some format adaptation and pre-processing are necessary before ...
متن کاملComparative Analysis of Wavelet-based Feature Extraction for Intramuscular EMG Signal Decomposition
Background: Electromyographic (EMG) signal decomposition is the process by which an EMG signal is decomposed into its constituent motor unit potential trains (MUPTs). A major step in EMG decomposition is feature extraction in which each detected motor unit potential (MUP) is represented by a feature vector. As with any other pattern recognition system, feature extraction has a significant impac...
متن کاملAutomatic Face Recognition via Local Directional Patterns
Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...
متن کاملContourlet-Based Edge Extraction for Image Registration
Image registration is a crucial step in most image processing tasks for which the final result is achieved from a combination of various resources. In general, the majority of registration methods consist of the following four steps: feature extraction, feature matching, transform modeling, and finally image resampling. As the accuracy of a registration process is highly dependent to the fe...
متن کامل